Wu Chunfeng
Senior Lecturer
Email:
Telephone: +65 6499 4765
Room Number: 1.602-30
Telephone: +65 6499 4765
Room Number: 1.602-30
Research Areas:
Quantum Physics, Optics, Photonics
Quantum Physics, Optics, Photonics
Pillar / Cluster: Engineering Product Development, Science, Mathematics and Technology
Education
- PhD in Physics, National University of Singapore
- MSc in Physics, Northeast Normal University, China
- BSc in Physics, Northeast Normal University, China
Research Interests
Chunfeng’s research mainly focuses on quantum physics, especially quantum information and computation. Specific research areas are
- Quantum optics and its application in quantum computation and simulation
- Quantum correlations
- Quantum decoherence and quantum control
Awards & Achievements
- Singapore Millennium Foundation Postdoctoral Fellowship (Aug 2006 – Jul 2008)
- Faculty of Science Best Graduate Researcher in Physics of 2005 (NUS, Singapore)
- President Graduate Fellowship of National University of Singapore (Aug 2004 – Jul 2005)
Selected Publications
- Y. M. Wang, Y. Su, X. Chen, and C. F. Wu, “Dephasing-Protected Scalable Holonomic Quantum Computation on a Rabi Lattice”, Phys. Rev. Appl. 14, 044043 (2020).
- C. F. Wu, Y. M. Wang, X. L. Feng, and J. L. Chen, “Holonomic Quantum Computation in Surface Codes”, Phys. Rev. Appl. 13, 014055 (2020).
- C. F. Wu, Y. M. Wang, C. Guo, Y. K. Ouyang, G. C. Wang, and X. L. Feng, “Initializing a permutation-invariant quantum error-correction code”, Phys. Rev. A 99, 012335 (2019).
- J. L. Li, G. C. Wang, R. Q. Xiao, C. F. Sun, C. F. Wu, and K. Xue, “Multi-qubit Quantum Rabi Model and Multi-partite Entangled States in a Circuit QED System”, Sci. Rep. 9, 1380 (2019).
- W. J. Shao, C. F. Wu, and X. L. Feng, “Generalized James’ effective Hamiltonian method”, Phys. Rev. A 95, 032124 (2017).
- Y. M. Wang, C. Guo, G. Q. Zhang, G. C. Wang, and C. F. Wu, “Ultrafast quantum computation in ultrastrongly coupled circuit QED systems”, Sci. Rep. 7, 44251 (2017).
- C. F. Wu, C. Guo, Y. M. Wang, G. C. Wang, X. L. Feng, and J. L. Chen, “Generation of Dicke states in the ultrastrong-coupling regime of circuit QED systems”, Phys. Rev. A 95, 013845 (2017).
- Y. M. Wang, J. Zhang, C. F. Wu, J. Q. You, and G. Romero, “Holonomic quantum computation in the ultrastrong coupling regime of circuit QED”, Phys. Rev. A 94, 012328 (2016).
- H. Y. Su, C. L. Ren, J. L. Chen, F. L. Zhang, C. F. Wu, Z. P. Xu, M. Gu, S. Vinjanampathy, and L. C. Kwek, “Beating the Clauser-Horne-Shimony-Holt and the Svetlichny games with optimal states”, Phys. Rev. A 93, 022110 (2016).
- C. F. Sun, G. C. Wang, C. F. Wu, H. D. Liu, X. L. Feng, J. L. Chen, and K. Xue, “Non-adiabatic holonomic quantum computation in linear system-bath coupling”, Sci. Rep. 6, 20292 (2016).
- C. L. Ren, H. Y. Su, Z. P. Xu, C. F. Wu, and J. L. Chen, “Optimal GHZ Paradox for Three Qubits”, Sci. Rep. 5, 13080 (2015).
- J. L. Chen, H. Y. Su, Z. P. Xu, Y. C. Wu, C. F. Wu, X. J. Ye, M. Zukowski, and L. C. Kwek, “Beyond Gisin’s Theorem and its Applications: Violation of Local Realism by Two-Party Einstein-Podolsky-Rosen Steering”, Sci. Rep. 5, 11624 (2015).
- J. L. Chen, A. Cabello, Z. P. Xu, H. Y. Su, C. F. Wu, and L. C. Kwek, “Hardy’s paradox for high-dimensional systems”, Phys. Rev. A 88, 062116 (2013).
- H. Y. Su, Y. C. Wu, J. L. Chen, C. F. Wu, and L. C. Kwek, “Quantum nonlocality of massive qubits in a moving frame”, Phys. Rev. A 88, 022124 (2013).
- C. F. Wu, J. L. Chen, X. J. Ye, H. Y. Su, D. L. Deng, Z. H Wang, and C. H. Oh, “Test of Einstein-Podolsky-Rosen Steering Based on the All-Versus-Nothing Proof”, Scientific Reports 4, 4291 (2014).
- H. Y. Su, J. L. Chen, C. F. Wu, D. L. Deng, and C. H. Oh, “Testing Leggett’s Inequality Using Aharonov-Casher Effect”, Scientific Reports 3, 2492 (2013).
- J. L. Chen, X. J. Ye, C. F. Wu, H. Y. Su, A. Cabello, L. C. Kwek, and C. H. Oh, “All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering”, Scientific Reports 3, 2143 (2013).
- J. L. Chen, H. Y. Su, C. F. Wu, D. L. Deng,A. Cabello, L. C. Kwek, and C. H. Oh, “Quantum Contextuality for a Relativistic Spin-1/2Particle”, Phys. Rev. A 87, 022109 (2013).
- D. L. Deng, C. F. Wu, J. L. Chen, S. J. Gu, S. X. Yu, and C. H. Oh, “Bell nonlocality in conventional and topological quantum phasetransitions”, Phys. Rev. A 86, 032305 (2012).
- H. Y. Su, J. L. Chen, C. F. Wu, S. X. Yu, and C. H. Oh, “Quantum contextuality in a one-dimensional quantumharmonic oscillator”, Phys. Rev. A 85, 052126 (2012).
- J. L. Chen, D. L. Deng, H. Y. Su, C. F. Wu, and C. H. Oh, “Detecting full N-particle entanglement inarbitrarily-high-dimensional systems with Bell-type inequalities”, Phys. Rev. A 83, 022316 (2011).
- J. Shen, X. L. Huang, X. X. Yi, C. F. Wu, and C. H. Oh, “Dynamics of quantum-classical hybrid systems:Effect of matter-wave pressure”, Phys.Rev. A 82, 062107 (2010).
- D. L. Deng, C. F. Wu, J. L. Chen, and C. H. Oh, “Fault-Tolerant Greenberger-Horne-Zeilinger Paradox Based on Non-AbelianAnyons”, Phys. Rev. Lett. 105, 060402 (2010).
- X. L. Feng, C. F. Wu, H. Sun, and C. H. Oh, “Geometric Entangling Gates in Decoherence-Free Subspaces with MinimalRequirements”, Phys. Rev. Lett. 103, 200501 (2009).
- H. Sun, X. L. Feng, C. F. Wu, J. M. Liu, S. Q. Gong, and C. H. Oh, “Optical rotation of heavy holespins by non-Abelian geometrical means”, Phys. Rev. B 80, 235404 (2009) as an Editors’ Suggestion.
- X. X. Yi, X. L. Huang, C. F. Wu, and C. H. Oh, “Driving quantum systems into decoherence-free subspaces by Lyapunovcontrol”, Phys. Rev. A 80, 052316 (2009).
- X. L. Zhang, X. L. Feng, C. F. Wu, and C. H. Oh, “Nongeometricmultiqubit conditional phase gates by adiabatic evolution for trapped ions”, Phys. Rev. A 79, 034301 (2009).
- C. F. Wu, X.L. Feng, X. X. Yi, I. M. Chen, and C. H. Oh, “Quantum gate operation in the decoherence free subspace of SQUID”, Phys. Rev. A 78, 062321 (2008).
- X. L. Huang, X. X. Yi, C. F. Wu, X. L. Feng, S. X.Yu, and C. H. Oh, “Effective Hamiltonian approach to open systems and itsapplications”, Phys. Rev. A 78,062114 (2008).
- J. L. Chen, C. F. Wu, L. C. Kwek, and C. H. Oh, “Bell inequalities for threeparticles”, Phys. Rev. A 78, 032107 (2008).
- X. L. Feng, C. F. Wu, C. H. Lai, and C. H. Oh, “Universalquantum computation with trapped ions in thermal motion by adiabaticpassage”, Phys. Rev. A 77,062336 (2008).
- C. F. Wu, J.L. Chen, L. C. Kwek, and C. H. Oh, “Correlation-functionBell inequality with improved visibility for three qubits”, Phys. Rev. A 77, 062309 (2008).
- Z. S. Wang, C. F. Wu, X. L. Feng, L. C. Kwek, C.H. Lai, C. H. Oh, and V. Vedral, “Nonadiabaticgeometric quantum computation”, Phys. Rev. A 76, 044303 (2007).
- C. F. Wu, Z.S. Wang, X. L. Feng, H. S. Goan, L. C. Kwek, and C. H. Oh, “Unconventional geometric quantum computationin a two-mode cavity”, Phys.Rev. A 76, 024302 (2007).
- X. L. Feng, Z. S. Wang, C. F. Wu, L. C. Kwek, C.H. Lai, and C. H. Oh, “Scheme forunconventional geometric quantum computation in cavity QED”, Phys. Rev. A 75, 052312 (2007).
- C. F. Wu, Y.Yeo, L. C. Kwek, and C. H. Oh, “Quantumnonlocality of four-qubit entangled states”, Phys. Rev. A 75, 032332 (2007).
- Z. S. Wang, C. F. Wu, X. L. Feng, L. C. Kwek, C.H. Lai, and C. H. Oh, “Effects ofa squeezed-vacuum reservoir on geometric phase”, Phys. Rev. A 75, 024102 (2007).
- J. L. Chen, C. F. Wu, L. C. Kwek, C. H. Oh, and M.L. Ge, “Violating Bell inequalities maximally for two d-dimensionalsystems”, Phys. Rev. A 74,032106 (2006).
- C. F. Wu, J.L. Chen, L. C. Kwek, and C. H. Oh, “Quantumnonlocality of N-qubit W state”, Phys. Rev. A 73, 012310 (2006).
- J. L. Chen, C. F. Wu, L. C. Kwek, D. Kaszlikowski,M. Zukowski, and C. H. Oh, “Multi-componentBell inequality and its violation for continuous-variable systems”, Phys. Rev. A 71, 032107 (2005).
- C. F. Wu, J.L. Chen, L. C. Kwek, C. H. Oh, and K. Xue, “Continuous multipartite entangled state in the Wigner representationand violation of Zukowski-Brunker inequality”, Phys. Rev. A 71, 022110 (2005).
- J. L. Chen, C. F. Wu, L. C. Kwek, and C. H. Oh,”Gisin’s theorem for three qubits”, Phys. Rev. Lett. 93, 140407 (2004).
Postdoctoral fellow and research assistant positions are available. Preferred research areas (theoretical research only) include, but not limited to
- Quantum computation in physical systems.
- Quantum control to mitigate decoherences.
- Quantum machine learning in physical systems.