Ye Ai

Assistant Professor

Email: nvlr@fhgq.rqh.ft
Telephone: +65 6499 4553
Research Areas:
Bio-Medical Engineering

Pillar / Cluster: Engineering Product Development


Dr Ye Ai obtained his B.S. in Mechanical Engineering from Huazhong University of Science and Technology (China) in 2005, and his Ph.D. in Mechanical and Aerospace Engineering from Old Dominion University (USA) in 2011. From 2005 to 2008, he worked as a research associate at Wuhan National Laboratory for Optoelectronics (China). Prior to joining SUTD as an assistant professor, he worked as a postdoctoral researcher and expanded his research in bioengineering at Los Alamos National Laboratory (USA).He was a visiting scholar at Massachusetts Institute of Technology from August 2014 to July 2015. Dr Ai’s professional expertise lies on Micro/nanofluidics, BioMEMS and Lab-on-a-chip. His research aims to develop low cost and field-deployable devices for various biomedical, energy and environmental applications.

Education Background

  • PhD, Mechanical and Aerospace Engineering, Old Dominion University, USA, 2011
  • BS, Mechanical Engineering, Huazhong University of Science and Technology, China, 2005

Research Interests and Objectives

Micro/nanofluidics refers to a set of technologies that can precisely control ions, fluids or particles confined in micron and nanometer scale channels. Due to similar length sales and fluid environments, BioMEMS or Lab-on-a-chip devices based on micro/nanofluidics technology are ideally suited to manipulate and analyze biological entities for various bioanalytical applications. This intrinsically multidisciplinary research field lies at the interface between engineering, micro/nanofabrication, material, chemistry and biology, which has great potential to revolutionize the study of complex biological systems and also leads to the development of novel biomedical devices.

A primary objective of Dr Ai’s research is to explore unique physical phenomena associated with fluid flows at small length scales and their interactions with structures, electrics, acoustics, optics and magnetics. Dr Ai’s long-term research goal aims to apply the understandings and discoveries to develop novel micro/nanofluidics technologies and BioMEMS or Lab-on-a-chip devices with applications in biomedical analysis, healthcare, bioenergy and environmental monitoring. Dr Ai’s research group is also striving to translate their innovative micro/nanofluidics technologies to commercial market through collaborations with industry.

Key Publications

Book and Book Chapter

  1. Qian S. and Ai Y., Electrokinetic Particle Transport in Micro/Nanofluidics: Direct Numerical Simulation Analysis, CRC Press Taylor & Francis Group, ISBN: 9781439854389, Boca Raton, Florida, USA, 2012.
  2. Ai Y. and Qian S., Field Effect Control of Ion, Fluid, and Particle Transport in Micro/Nanofluidics. In Encyclopedia of Surface and Colloid Science, CRC Press Taylor & Francis Group, New York, USA, 2012.

Selected Journal Publications After Joining SUTD

  1. Ma Z.C., Zhou Y.N., Collins D.J., and Ai Y., Fluorescence activated cell sorting via a focused traveling surface acoustic beam, Lab on a Chip, 2017, accepted. Link
  2. Yang D.H., Subramanian G., Duan J.M., Gao S.B., Bai L., Chandramohanadas R., and Ai Y., A portable image-based cytometer for rapid malaria detection and quantification, PLOS One, 2017, 12(6): e0179161. Link
  3. Kishor R., Ma Z.C., Sreejith S., Seah Y.P., Wang H.Y., Ai Y., Wang Z.F., Lim T.T., and Zheng Y.J., Real time size-dependent particle segregation and detection in a surface acoustic wave-photoacoustic integrated microfluidic system, Sensors and Actuators B: Chemical, 2017, 252: 568-576. Link
  4. Collins D.J., Khoo B.L., Ma Z.C., Winkler A., Weser R., Schmidt H., Han J.Y., and Ai Y., Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming, Lab on a Chip, 2017, 17: 1769-1777. Link
  5. Devendran C., Collins D.J., Ai Y., and Neild A., Huygens-Fresnel acoustic self-interaction and the development of robust time-averaged patterns from travelling surface acoustic waves, Physical Review Letters, 2017, 118: 154501. Link
  6. Chen F.M., Ai Y., and Yang H.Y., Boron detection and quantification based on the absorption spectra of pyridoxine and its boron complex, Environmental Chemistry, 2017, 14: 135-140. Link
  7. Xi H.D., Zheng H., Guo W., Ganan-Calvo A.M., Ai Y., Tsao C.W., Zhou J., Li W.H., Huang Y.Y., Nguyen N.T., and Tan S.H., Active droplet sorting in microfluidics: a review, Lab on a Chip, 2017, 17: 751-771. Link
  8. Ma Z.C., Collins D.J., and Ai Y., Single-actuator bandpass microparticle filtration via traveling surface acoustic waves, Colloids and Interface Science Communications, 2017, 16: 6-9. Link
  9. Collins D.J., Ma Z.C., Han J.Y., and Ai Y., Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves, Lab on a Chip, 2017, 17: 91–103. (Featured as the front cover article) Link
  10. Ma Z.C., Collins D.J., Guo J.H., and Ai Y., Mechanical properties based particle separation via traveling surface acoustic wave, Analytical Chemistry, 2016, 88 (23): 11844–11851. Link
  11. Ma Z.C., Teo A.J.T., Tan S.H., Ai Y., and Nguyen N.T., Self-aligned interdigitated transducers for acoustofluidics, Micromachines, 2016, 7: 216. (Featured as the front cover article) Link
  12. Yang D.H., Taybi M., Huang Y.X., Yang H.Y., and Ai Y., A microfluidic DNA sensor based on three dimensional (3D) hierarchical MoS2/carbon nanotube nanocomposites, Sensors, 2016, 16: 1911. Link
  13. Ng J.A., Collins D.J., Devendran C., Ai Y. and Neild A., Flow-rate insensitive deterministic particle sorting using a combination of travelling and standing surface acoustic waves, Microfluidics and Nanofluidics, 2016, 20: 151. Link
  14. Collins D.J., Devendran C., Ma Z.C., Ng J.A., Neild A., and Ai Y., Acoustic tweezers via sub time-of-flight regime surface acoustic waves, Science Advances, 2016, 2: e1600089. Link
  15. Fakhfouri A., Devendran C., Collins D.J., Ai Y. and Neild A., Virtual membrane for filtration of particles using surface acoustic waves (SAW), Lab on a Chip, 2016, 16: 3515-3523. Link
  16. Collins D.J., Ma Z.C., and Ai Y., Highly localized acoustic streaming and size-selective sub-micron particle concentration using high frequency microscale focused acoustic fields, Analytical Chemistry, 2016, 88: 5513–5522. Link
  17. Ma Z.C., Collins D.J., and Ai Y., A detachable acoustofluidic system for particle separation via a travelling surface acoustic wave, Analytical Chemistry, 2016, 88: 5316–5323. Link
  18. Collins D.J., Neild A., and Ai Y., Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting, Lab on a Chip, 2016, 16: 471-479. (Featured as the front cover article) Link
  19. Huang Y.X., Guo J.H., Kang Y.J., Ai Y., and Li C.M., Preparation of two dimensional atomically thin MoS2 nanosheets and their sensing applications, Nanoscale, 2015, 7: 19358-19376. Link
  20. Collins D.J., Neild A., deMello A., Liu A.Q., and Ai Y., The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation, Lab on a Chip, 2015, 15: 3439-3459. Link
  21. Guo J.H., Kang Y.J.,and Ai Y., Radiation dominated acoustophoresis driven by surface acoustic waves, Journal of Colloid and Interface Science, 2015, 455(1): 203-211. Link
  22. Ma Z.C., Guo J.H., Liu Y.J., and Ai Y., The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect, Nanoscale, 2015, 7: 14047-14054. Link
  23. Guo J.H., Huang X.W., and Ai Y., On-demand lensless single cell imaging activated by differential resistive pulse sensing, Analytical Chemistry, 2015, 87: 6516-6519. Link
  24. Huang Y.X., Yang H.Y., and Ai Y., DNA single-base mismatch study using graphene oxide nanosheets based fluorometric biosensor, Analytical Chemistry, 2015, 87 (18): 9132–9136. Link
  25. Guo J.H., Liu X.H., Kang K., Ai Y., Wang Z.M., and Kang Y.J., A compact optofluidic cytometer for detection and enumeration of tumor cells, Journal of Lightwave Technology, 2015, 33(16): 3433-3438. Link
  26. Huang Y.X., Shi Y.M., Yang H.Y., and Ai Y., A novel single-layered MoS2 nanosheets based microfluidic biosensor for ultrasensitive detection of DNA, Nanoscale, 2015, 7: 2245-2249. Link
  27. Guo J.H., Chen L., Ai Y., Chen Y.B., Li C.M., Kang Y.J., and Wang Z.M., Numerical and experimental characterization of solid-state micropore-based cytometer for detection and enumeration of biological cells, Electrophoresis, 2015, 36(5): 737-743. Link
  28. Puttaswamy S.V., Xue P., Kang Y.J., and Ai Y., Simple and low cost integration of highly conductive three-dimensional electrodes in microfluidic devices, Biomedical Microdevices, 2015, 17: 4. Link
  29. Ai Y., Zeng Z.P., and Qian S., Direct numerical simulation of AC dielectrophoretic particle-particle interactive motions, Journal of Colloid and Interface Science, 2014, 417: 72−79. (Featured as the front cover article) Link
  30. Ai Y., Sanders C.K., and Marrone B.L., Separation of E. coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves, Analytical Chemistry, 2013, 85(19): 9126−9134. Link
Postdoctoral Researcher Position

The Applied Bio-Microfluidics research group has a new postdoctoral position available in microfluidics, biosensing, and point-of-care diagnostics. Successful candidate will work in an interdisciplinary and collaborative team to develop novel microfluidic devices for point-of-care diagnostics in low-resource settings.

Candidates should have a strong background in at least one of these areas: microfluidics, microfabrication, and biosensing. Priority will be given to candidates who have demonstrated the application of microfluidics to the manipulation and characterization of single biological cells. Working experience in cell culture and electrochemical impedance spectroscopy is a plus. The successful candidate should have good communication and writing skills.

Interested candidates are requested to send the following materials to Dr. Ai at
1) a cover letter highlighting research interests and potential match for the aforementioned expertise;
2) a recent CV with a list of publications;
3) copies of up to three relevant scientific papers.

PhD Scholarship Available

Fully funded PhD student positions (SUTD Fellowship and SUTD-MIT SMART Graduate Fellowship) are available in my group. Please contact Dr. Ai at for more details.

Media Report

Our collaborative work on the development of a portable image-based flow cytometer for rapid malaria detection and quantification has been featured by The Straits Times.